当前位置:首页 > 新能源汽车 > 正文

导数中的dx是什么意思?

导数中的dx是什么意思?

  导数中的dx是指x的微小变量,导数乘dx是微分。  导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df/dx(x0)。  导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

d(x)代表对x求微分,说起来dx=1,在式子中乘除一个1并不会改变什么,但是在微积分中是很重要的,用初中能理解的话来说就是对x求导。而那个(d/dx)f(x)中,d(f(x))表示对f(x)求微分也就是求导。

dy/dx 中的d是微小的增量的意思,也就是指微小的增量y除以微小的增量x,在函数中是 微分的意思。

dy/dx可以理解为y对x求导,也可以理解为微商,即微分的商。

首先要知道,这里的y是x的函数,即y=f(x)。dy就是对y的微分,dx就是对x的微分,是把增量细微化,dx就是很小很小的一个x,dy=A·delta(一个三角)x,dy是y因为x变化而变化的线性主部,没有图不容易解释线性主部这个词的含义,就是说dy是delta y的一部分,最终,dy/dx就是y的线性增量除以x,所以正好就是一条曲线的切线。

这是微积分中的一种运算方式 它是指未知变量x与未知因变量y的关系 它通过与导数的转换能求得它们与整体的关系。